股市投資

基金ETF

全球總經

理財商業

消費信用

保險稅制

房產生活
台積電 半導體製程競爭力關鍵:FinFET 工作原理
收藏文章
很開心您喜歡 知識力 的文章, 追蹤此作者獲得第一手的好文吧!
知識力
字體放大


分享至 Line

分享至 Facebook

分享至 Twitter


台積電 半導體製程競爭力關鍵:FinFET 工作原理

最近更新時間: 21 February, 2022

 
展開

護國神山台積電( 2330-TW )原本已經產能與訂單供不應求的狀況,最近又有新生意上門了。

<新聞 1>:晶圓代工龍頭廠台積電傳出又接獲蘋果大單!半導體供應鏈指出,蘋果自行開發應用在 5G 的射頻接收器(RF transceiver ),敲定由台積電採用 6nm 製程代工生產,也是目前業界採最先進製程的射頻接收器,年產能超過 15 萬片。

這款原本由蘋果向高通外購的射頻接收器,由三星以 4nm 製程代工,日前外媒報導因三星 4nm 製程會出現產品高溫降頻等問題,高通已將新款 5G 旗艦晶片代工訂單轉由台積電代工生產,預計今年第 3 季放量。換言之,三星又掉單了。

<新聞 2>:英特爾召開分析師大會,宣示將在 2025 年前重回電晶體每瓦效能的領先地位,將台積電 7nm 至 3nm 先進製程列為提高總體產能的重要策略,執行長基辛格(Pat Gelsinger)已順利爭取到未來 2~3 年更多台積電的先進製程代工產能,且涵蓋製程包括 7nm 及 6nm、5nm 及 4nm、及 3nm 等。法人預期英特爾可望在未來 2 年內成為台積電前三大客戶之一。

這場晶圓先進製程大戰,7nm 以下戰場現為台積電、三星與英特爾對戰情勢,隨著製程持續演進,電晶體微縮越來越困難,雙方實力差距也明顯拉開。究竟這個讓台積電囊括大半市占的製造技術——FinFET 是什麼東西?

場效電晶體(FET:Field Effect Transistor)

FET 的全名是「場效電晶體(FET:Field Effect Transistor)」,先從大家較耳熟能詳的「MOS」來說明。MOS 的全名是「金屬 -氧化物 -半導體場效電晶體(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)」, 構造如<圖一>所示,左邊灰色的區域(矽)叫做「源極(Source)」,右邊灰色的區域(矽)叫做「汲極(Drain)」,中間有塊金屬(綠色)突出來叫做「閘極(Gate)」,閘極下方有一層厚度很薄的氧化物(黄色),因為中間由上而下依序為金屬(Metal)、氧化物(Oxide)、半導體(Semiconductor),因此稱為「MOS」。

圖一、MOSFET代表一個 0 或一個 1,就是電腦裡的一個「位元(bit)」

MOSFET 的工作原理與用途

MOSFET 的工作原理很簡單,電子由左邊的源極流入,經過閘極下方的電子通道,由右邊的汲極流出,中間的閘極則可以決定是否讓電子由下方通過,有點像是水龍頭的開關一樣,因此稱為「閘」;電子是由源極流入,也就是電子的來源,因此稱為「源」;電子是由汲極流出,看看說文解字裡的介紹:汲者,引水于井也,也就是由這裡取出電子,因此稱為「汲」。

  • 當閘極不加電壓:電子無法導通,代表這個位元是 0,如<圖一(a)>所示;
  • 當閘極加正電壓:電子可以導通,代表這個位元是 1,如<圖一(b)>所示。

MOSFET 是目前半導體產業最常使用的一種場效電晶體(FET),科學家將它製作在矽晶圓上,是數位訊號的最小單位,一個 MOSFET 代表一個 0 或一個 1,就是電腦裡的一個「位元(bit)」。電腦是以 0 與 1 兩種數位訊號來運算;我們可以想像在矽晶片上有數十億個 MOSFET,就代表數十億個 0 與 1,再用金屬導線將這數十億個 MOSFET 的源極、汲極、閘極連結起來,電子訊號在這數十億個 0 與 1 之間流通就可以交互運算,最後得到使用者想要的加、減、乘、除運算結果,這就是電子計算機(電腦)的基本工作原理。晶圓廠像台積電(2330-TW)、聯電(2303-TW),就是在矽晶圓上製作數十億個 MOSFET 的工廠。

閘極長度: 半導體製程進步的關鍵

在 MOSFET 中,「閘極長度(Gate length)」大約 10 奈米,是所有構造中最細小也最難製作的,因此我們常常以閘極長度來代表半導體製程的進步程度,這就是所謂的「製程線寬」。閘極長度會隨製程技術的進步而變小,從早期的 0.18 微米、0.13 微米,進步到 90 奈米、65 奈米、45 奈米、22 奈米、10 奈米,到目前台積電正在開發的最新製程 7 奈米、5 奈米、3 奈米。

當閘極長度愈小,則整個 MOSFET 就愈小,而同樣含有數十億個 MOSFET 的晶片就愈小,封裝以後的積體電路就愈小,最後做出來的手機就愈小囉!10 奈米到底有多小呢?細菌大約 1 微米,病毒大約 100 奈米,換句話說,人類現在的製程技術可以製作出只有病毒 1/10(10 奈米)以下的結構,厲害吧!(註:製程線寬其實就是閘極長度,只是圖一看起來 10 奈米的閘極長度反而比較短,因此有人習慣把它叫做「線寬」。)

FinFET將 半導體製程帶入新境界

MOSFET 的結構自發明以來,到現在已使用超過四十年,當閘極長度縮小到 20 奈米以下的時候,遇到了許多問題,其中最麻煩的是當閘極長度愈小,源極和汲極的距離就愈近,閘極下方的氧化物也愈薄,電子有可能偷偷溜過去產生「漏電(Leakage)」;另外一個更麻煩的問題,原本電子是否能由源極流到汲極是由閘極電壓來控制的,但是閘極長度愈小,則閘極與通道之間的接觸面積(圖一紅色虛線區域)愈小,也就是閘極對通道的影響力愈小,要如何才能保持閘極對通道的影響力(接觸面積)呢?

因此美國加州大學伯克萊分校胡正明、Tsu-Jae King-Liu、Jeffrey Bokor 等三位教授發明了「鰭式場效電晶體(FinFET:Fin Field Effect Transistor)」,把原本 2D 構造的 MOSFET 改為 3D 的 FinFET,如<圖二>所示,因為構造很像魚鰭 ,因此稱為「鰭式(Fin)」。

由圖中可以看出原本的源極和汲極拉高變成立體板狀結構,讓源極和汲極之間的通道變成板狀,則閘極與通道之間的接觸面積變大了(圖二黃色的氧化物與下方接觸的區域明顯比圖一紅色虛線區域還大),這樣一來即使閘極長度縮小到 20 奈米以下,仍然保留很大的接觸面積,可以控制電子是否能由源極流到汲極,因此可以更妥善的控制電流,同時降低漏電和動態功率耗損,所謂動態功率耗損就是這個 FinFET 由狀態 0 變 1 或由 1 變 0 時所消耗的電能,降低漏電和動態功率耗損就是可以更省電的意思囉!

圖二、FinFET 就是把原本 2D 構造的源極和汲極拉高變成立體板狀結構

掌握 FinFET 技術就是掌握市場競爭力

簡而言之,鰭式場效電晶體是閘極長度縮小到 10 奈米以下的關鍵,擁有這個技術的製程與專利,才能確保未來在半導體市場上的競爭力,這也是讓許多國際大廠趨之若騖的主因,而在過去幾年台積電與三星的競爭中,台積電幾乎是完勝三星,與台積電擁有成熟的鰭式場效電晶體(FinFET)製程與專利密不可分,也使得台積電成為台灣少數具有國際競爭力的世界級高科技公司。

知識力》授權轉載

【延伸閱讀】

 
週餘
 
 
分享文章
分享至 Line
分享至 Facebook
分享至 Twitter
收藏 已收藏
很開心您喜歡 知識力 的文章, 追蹤此作者獲得第一手的好文吧!
知識力
分享至 Line
分享至 Facebook
分享至 Twitter
地圖推薦
 
推薦您和本文相關的多維知識內容
什麼是地圖推薦?
推薦您和本文相關的多維知識內容
WP RSS Plugin on WordPress