股市投資 小副述文字一共二十個字小副述文字一共二十


基金ETF 小副述文字一共二十個字小副述文字一共二十


全球總經 小副述文字一共二十個字小副述文字一共二十


理財商業 小副述文字一共二十個字小副述文字一共二十


消費信用 小副述文字一共二十個字小副述文字一共二十


保險稅制 小副述文字一共二十個字小副述文字一共二十


房產生活 小副述文字一共二十個字小副述文字一共二十


 
MOSFET 是什麼?MOSFET應用有哪些?
收藏文章
很開心您喜歡 知識力 的文章, 追蹤此作者獲得第一手的好文吧!
知識力
字體放大


分享至 Line

分享至 Facebook

分享至 Twitter


MOSFET 是什麼?MOSFET應用有哪些?

2022 年 8 月 23 日

 
展開

MOSFET,簡稱「MOS」,其全稱為金屬—氧化物—半導體場效電晶體(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)。無論在 IC 設計裡,還是電路板應用上,都十分廣泛。尤其在大功率半導體領域,各種結構的 MOSFET 更是發揮著不可替代的作用。

許多電子產品的零件組成,需要「MOSFET」,因此也會與 MOSFET 相關個股有密切相關!例如:電腦、平板電腦、智慧型手機及相關工業用品… 等。不過 MOSFET 是什麼?究竟長什麼樣子?

MOSFET 是什麼?

MOSFET 是功率離散元件的主體之一,扮演著電源電子控制的角色(可以想像成是開關)。依照不同的導電特性通道的差異,又可分為 NMOS、PMOS、CMOS 三種:

NMOS(N-type MOS)

NMOS 的構造如 <圖一 (a)> 所示,在 P 型矽基板的左右各製作一個 N 型的區域(類似「水溝」的構造),並且在上方蒸鍍金屬電極;另外在矽基板的中央上方製作一層氧化矽,上方再蒸鍍一層金屬電極(目前大多使用多晶矽取代),中央的金屬稱為「閘極(Gate)」,左邊的金屬稱為「源極(Source)」,右邊的金屬稱為「汲極(Drain)」。

PMOS(P-type MOS)

PMOS 的構造如 <圖一 (b)> 所示,與 NMOS 相同,但是 N 型與 P 型區域相反,因此導電特性相反。

CMOS(Complementary MOS)

CMOS 的構造如 <圖一 (c)> 所示,由「一個 NMOS」+「一個 PMOS」組合起來形成一個 CMOS,是目前最常使用的一種主動元件。

圖一、MOS 與 CMOS 的構造

閘極長度(Gate length)

由 <圖一> 可以看出,MOS 的閘極長度大約 0.1μm(微米),所以 NMOS 與 PMOS 的尺寸大約 0.5 μm,MOS 的尺寸大約 1 μm。

閘極長度是所有構造中最細小也最難製作的,因此我們常常以閘極長度來代表半導體製程的進步程度,這就是所謂的「製程線寬」。閘極長度會隨製程技術的進步而變小,從早期的 0.18 微米、0.13 微米,進步到 90 奈米、65 奈米、45 奈米、22 奈米,到目前最新製程 10 奈米。當閘極長度愈小,則整個 MOS 就愈小,而同樣含有數十億個 MOS 的晶片就愈小,封裝以後的積體電路就愈小,最後做出來的手機就愈小囉!

【備註】製程線寬其實就是閘極長度,只是圖一看起來 10 奈米的閘極長度反而比較短,因此有人習慣把它叫做「線寬」。

MOSFET 應用

MOS 開關(MOS switch)

NMOS 開關的工作原理如 <圖三> 所示,將電子由左邊的源極(N 型水溝)注入,經過中央的閘極下方(P 型通道)以後,再由右邊的汲極(N 型水溝)流出,是否要讓電子通過,則由閘極「不加電壓(關)」或「施加電壓(開)」來控制:

閘極不加電壓

  • 電子由左邊的源極(N 型水溝)注入以後,由於閘極下方為 P 型不導電子,故電子無法通過,形成斷路,代表 0,如 <圖二 (a)> 所示。

閘極施加電壓

  • 電子由左邊的源極(N 型水溝)注入以後,由於閘極施加正電壓吸引下方 P 型矽晶圓中的少量電子浮到表面,形成含有電子的通道(Channel),電子沿著通道繼續前進,形成通路,代表 1,如 <圖二 (b)> 所示。
    我們就是利用閘極快速地「不加電壓(關)」或「施加電壓(開)」,來控制電子的「不導通」或「導通」,進行 0 與 1 的快速運算。

圖二、NMOS開關的工作原理

一個積體電路(IC)含有許多的 MOS,就可以進行一大堆 0 與 1 的運算,這就是個人電腦與「數位積體電路」工作的基本原理,除了 NMOS 以外,PMOS 或 CMOS 都可以做為開關來使用,在此不再詳細討論。

MOS 放大器(MOS amplifier)

使用 NMOS 除了可以當開關,也可以做為放大器,其工作原理如 <圖三 (a)> 所示,將「較小的電壓或電流(小訊號)」輸入閘極(Gate),由於 NMOS 的元件特性會使訊號放大,轉變成「較大的電壓或電流(大訊號)」由汲極(Drain)輸出,這就是「類比積體電路」工作的基本原理,除了 NMOS 以外,PMOS 或 CMOS 都可以做為放大器來使用,其工作原理如 <圖三 (b)> 所示,在此不再詳細討論。

圖三、NMOS 放大器的工作原理

CMOS 開關與放大器

由上面的描述可以得知,MOS 說穿了就是一種「開關」,也就是可以控制 0 與 1 的元件,我們利用這種元件來製作可以處理數位訊號(0 與 1)的積體電路(IC),但是目前市面上幾乎所有的積體電路(IC)都是使用 CMOS 來製作,而不是使用 NMOS 或 PMOS。

由 <圖一> 能看出 CMOS 是由一個 NMOS 與一個 PMOS 組合而成,雖然功能與單獨一個 NMOS 相同,但是 CMOS 的體積是單獨一個 NMOS 的二倍,製作成本較高,為什麼積體電路(IC)會使用成本較高的 CMOS 來製作呢?

因為 CMOS 只有在處理數位訊號由 0 變 1 或由 1 變 0 時才會消秏電能(動態功率耗損),如果一直保持 0 或一直保持 1 時並不會消秏電能(靜態功率耗損),因此比單獨一個 NMOS 或 PMOS 還要省電,符合目前所有電子產品省電的要求,所以目前幾乎所有的積體電路(IC)實際上都是使用 CMOS 來製作,換句話說,目前的積體電路是:犧牲大小,成全省電。

知識力》授權轉載

【延伸閱讀】

 
週餘
 
 
分享文章
分享至 Line
分享至 Facebook
分享至 Twitter
收藏 已收藏
很開心您喜歡 知識力 的文章, 追蹤此作者獲得第一手的好文吧!
知識力
分享至 Line
分享至 Facebook
分享至 Twitter
地圖推薦
 
推薦您和本文相關的多維知識內容
什麼是地圖推薦?
推薦您和本文相關的多維知識內容